Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients.
نویسندگان
چکیده
This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for classification of electroencephalogram (EEG) signals. Decision making was performed in two stages: feature extraction using the wavelet transform (WT) and the ANFIS trained with the backpropagation gradient descent method in combination with the least squares method. Five types of EEG signals were used as input patterns of the five ANFIS classifiers. To improve diagnostic accuracy, the sixth ANFIS classifier (combining ANFIS) was trained using the outputs of the five ANFIS classifiers as input data. The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach. Some conclusions concerning the saliency of features on classification of the EEG signals were obtained through analysis of the ANFIS. The performance of the ANFIS model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed ANFIS model has potential in classifying the EEG signals.
منابع مشابه
The use of wavelet - artificial neural network and adaptive neuro fuzzy inference system models to predict monthly precipitation
Precipitation forecasting due to its random nature in space and time always faced with many problems and this uncertainty reduces the validity of the forecasting model. Nowadays nonlinear networks as intelligent systems to predict such complex phenomena are widely used. One of the methods that have been considered in recent years in the fields of hydrology is use of wavelet transform as a moder...
متن کاملDetection and Classification of Epileptic Seizures using Wavelet feature extraction and Adaptive Neuro-Fuzzy Inference System
Epilepsy, a neurological disorder in which patients suffer from recurring seizures, affects approximately 1% of the world population. In this work, an attempt has been made to enhance the diagnostic importance of EEG using Adaptive neuro fuzzy inference system (ANFIS) and Wavelet transform coefficients. For this study, EEG for 20 normal and 30 seizure subjects under standard recording procedure...
متن کاملAdaptive Neuro-Fuzzy Inference System application for hydrothermal alteration mapping using ASTER data
The main problem associated with the traditional approach to image classification for the mapping of hydrothermal alteration is that materials not associated with hydrothermal alteration may be erroneously classified as hydrothermally altered due to the similar spectral properties of altered and unaltered minerals. The major objective of this paper is to investigate the potential of a neuro-fuz...
متن کاملThe use of wavelet-artificial neural network and adaptive neuro-fuzzy inference system models to predict monthly precipitation
In water supply systems, One of the most important components as safety unit and the current controller (Switching flow and regulate the amount of flow) used in the arrangement of lines of water. In this study, according to multiple ponds in Tanguiyeh dam water pipeline to industrial and mining company Gol Gohar Sirjan Butterfly valve used in these ponds using Fluent software simulation has bee...
متن کاملA Real Time Adaptive Multiresolution Adaptive Wiener Filter Based On Adaptive Neuro-Fuzzy Inference System And Fuzzy evaluation
In this paper, a real-time denoising filter based on modelling of stable hybrid models is presented. Thehybrid models are composed of the shearlet filter and the adaptive Wiener filter in different forms.The optimization of various models is accomplished by the genetic algorithm. Next, regarding thesignificant relationship between Optimal models and input images, changing the structure of Optim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neuroscience methods
دوره 148 2 شماره
صفحات -
تاریخ انتشار 2005